
1

Structure Search and Stability Enhancement of Bayesian Networks

Hanchuan Peng and Chris Ding
NERSC Division, Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA, 94720, USA
Email: hpeng@lbl.gov, chqding@lbl.gov

Abstract

Learning Bayesian network structure from
large-scale data sets, without any expert-
specified ordering of variables, remains a dif-
ficult problem. We propose systematic im-
provements to automatically learn Bayesian
network structure from data. First, we propose
a linear parent search method to generate can-
didate graph. Second, we propose a formal ap-
proach to eliminate cycles using minimal like-
lihood loss, a short cycle first heuristic, and a
cut-edge repairing. Third, we propose structure
perturbation to assure the stability of the net-
work. This step also suggests a stability-
enhancement method to refine the network
structure. The algorithms are easy to imple-
ment and efficient for large networks. Experi-
mental results on two data sets show that our
new approach outperforms existing methods.

1. Introduction

The rapidly increasing quantity of data in many data
mining fields allows a great opportunity to model and
understand the complicated relationship among a large
number of variables. Bayesian Networks (BNs) [18,5,1,
11] provide a natural framework for this purpose
[2,8,10,17,19,23,22,20]. For example, Murphy and
Mian [17] used the dynamic BNs to infer genetic net-
works from time series data. Hartemink et al [10] pre-
sented an annotated edge method based on BNs to
model regulatory networks. Sarkar and Boyer proposed
Bayesian perceptual inference networks [22]. Peng et al
used the BNs in morphology-function analysis of medi-
cal images [20]. Cheng applied BN [2] to biomedical
data feature extraction and classification which won a
recent data mining contest (KDD Cup-2001).

A Bayesian network [1,18,5,11] is a Directed
Acyclic Graph (DAG) G = (V, E) that models the prob-
abilistic dependencies of a group of nodes, i.e.

)|(})({ gVg
gPgP π

∈
Π= , (1)

where each node g stands for a variable, πg is the par-
ents of node g in G; the directed edges (or hyper-edges)
among nodes encode the respective conditional prob-
abilistic distributions. The factorization property allows

the joint distribution of the network be factorized as the
product of conditional probabilities of every variable
given its parents.

A major difficulty is to identify BN structures
from input data D directly. The problem is NP-hard [3],
since the total number of possible graphs is exponential
to n, the number of variables in the data [5,21]. Many
heuristic search methods (for reviews see Heckerman
[11] and Buntine [1]) have been proposed. A well-
known algorithm is K2 [5], which however assumes a
predefined ordering of all nodes, thus is not suitable
wherever there is little knowledge about variables' or-
dering. Many previous methods, e.g. Cheng's condi-
tional independence test based method [2], often have at
least O(n4) complexity. Another drawback of many ex-
isting methods is that predefined thresholds are neces-
sary to terminate the BN search procedure (e.g. [19]).
For many large applications, the number of variables is
large, several hundreds at least. Thus an efficient algo-
rithm to identify BN structures is particularly important.

Because of the difficulty in constructing BNs, an
intuitive approach is to first draft candidate graphs and
then eliminate possible cycles (e.g. [15,16,2]). For-
mally, a candidate graph is very similar to the depend-
ency graph [12]. Our work emphasizes more on the
efficiency in constructing BNs and the quality measures
of the learnt BNs.

In this paper we propose a new O(n2) algorithm to
infer locally stable Bayesian networks without requiring
any predefined ordering of variables or predefined
thresholds to terminate the model search. Our new algo-
rithm consists of three main steps. First, we develop an
efficient algorithm to search for optimal parents of
nodes to form a candidate graph, which includes impor-
tant gene regulations for every variable. We propose
two improvements on the K2 algorithm to generate the
candidate graph by searching for a minimum set of par-
ents for every node with a linear search heuristic to
maximize the posterior. This method significantly re-
duces the complexity of the Bayesian learning. (See §3)

Second, we propose a formal treatment for elimi-
nating possible cycles in the candidate graph that would
violate the acyclic assumption of BNs. We propose a
minimal likelihood loss criterion and a short cycle first
heuristic that can be efficiently implemented. We also

2

design a heuristic to repair the DAG structure due to
cycle elimination. (See §4)

Third, we propose a locally stable condition as a
desirable feature of BN: any local change of edges will
lower the posterior of the network. We design structural
perturbation scheme to evaluate networks. We also pro-
pose algorithm to enhance the stability. (See §5)

2. Bayesian Likelihood Score

With the assumption of a uniform prior of G (for dis-
cussions on priors, see [11]), we use the logarithm pos-
terior (and likelihood) of G given the data D,

ℓ(G) = logP(G|D) ∝ logP(D|G) (2)

as the metric to judge the optimality of a network struc-
ture. The likelihood P(D|G) can be calculated in the
following [5]:

P(D|G) = !
1)!1(

)!1(

11 ijkN

r

kirijN
ir

q

j

n

i

ii

=−+

−

==
ΠΠΠ , (3)

where n is the number of variables, or nodes; ri is the
number of states of the ith variable; πi is the set of par-
ent nodes of the ith variable; qi is the the numbers of
joint states of the nodes in πi; Nijk is the number of cases
in which the ith variable assumes the kth state and the
set πi assumes the jth joint state; and Nij = Σ ri

k=1 Nijk.
Other scores include Minimal Description Length
(MDL) [1], BDe [11], etc.

3. Candidate Graph

The candidate graph Gc is a directed graph containing
important associations of variables where the redun-
dancy of associations should be minimized. Our ap-
proach is to identify the optimal parent set for each
node based on the Bayesian likelihood. Here our em-
phasis is on how to efficiently search for optimal parent
set, π = {gi

*, i=1,…,m}. The locally optimal parent set is
similar to dependency graph of Heckerman et al [12];
the difference is that they used regression to determine
the dependency while we directly search based on the
Bayesian score.

Our algorithm improves upon the K2 search algo-
rithm [5]. K2 algorithm uses a simple incremental
search strategy: it first searches for the best singleton
parent g1

*, i.e., g1
* = argmaxi ℓ(gi→g), and ℓ(gi→g) >

ℓ(g) + ℓ(gi). It then searches for the second parent ac-
cording to (a) g2

*= argmaxi ℓ(g1
*→g←gi) and (b) the

new score is increased: ℓ(g1
*→g←gi) > ℓ(g1

*→g) +
ℓ(gi). If the second parent cannot be found, then the
search is terminated; otherwise, continue to search for
the third parent, etc. K2 has a natural termination and
does not need a threshold.

We extend K2 in two directions. (i) We note that
once a parent or parents are found, many of the rest of
nodes are rendered conditionally independent of g. Thus
in searching for second parent g2

*, we do not need to
search through all the rest variables, Ω1={V \g1

*}; in-
stead we need only search

Ω1
+ = {gi∈V, gi≠g1

*, ℓ(gi→g) > ℓ(gi) + ℓ(g)}. (4)

Note that Ω1
+ is obtained automatically when searching

for g1
*. Similarly, when searching for g3

*, we need only
search Ω2

+, instead of Ω2={V \{g1
*, g2

*}}; etc. This
amounts to a large saving in computation.

(ii) We systematically search a larger space than
K2. In K2, g1

* corresponds to the largest ℓ(gi→g). De-
note the respective parent set as π(1). We can search
another set of parents beginning with the second largest
ℓ(gi→g), denoted as π(2). If π(2) leads to better score than
π(1), then we take π(2) as the final parent set. We call this
2-max search. This can be extended to k-max search.
Clearly, the Bayesian score of π(k) increases monotoni-
cally with k, at the expense of linearly enlarged com-
plexity.

We call this modified method the K2+ algorithm.
It has the complexity O(αkmn), where α counts for the
reduction using Ω1

+, Ω2
+,…, Ωm

+ instead of Ω1, Ω2 ,…,
Ωm (often Ωi

+ contains a much smaller number of vari-
ables than Ωi). Accordingly, the complexity to construct
the whole candidate graph is O(n2), which is much less
than that of many other popular methods, e.g. Cheng's
O(n4) algorithm [2].

4. Cycle Elimination

Since the candidate graph Gc is generated via local op-
timal search, it is possible that Gc contains many cycles
that violate the basic acyclic assumption of BNs.

A simple approach is to enumerate all possible
DAGs that could emerge from Gc and select the one
with the largest score. However, this method is imprac-
tical due to its exponential complexity. One earlier ap-
proach is to use a predefined ordering of all nodes to
partially avoid this problem, as used in many BN learn-
ing algorithms [5,1,7]. Approximation methods based
on random edge cut [16] have also been studied. A heu-
ristic decision-tree based approach has also been stud-
ied in [15]. It seems, however, that a formal study on
cycle elimination is lacking so far. In this paper, we
resolve this problem via graph algorithmic approach.
This approach consists of three heuristics that can be
implemented efficiently.

Any cycle must lie in a Strongly Connected Com-
ponent (SCC) of the graph. An efficient O(n) algorithm
based on depth-first search can locate SCCs in a di-

3

rected graph [6]. We first find all the SCCs in Gc, and
eliminate cycles only within each SCC.

4.1 Bayesian Likelihood Loss Function

If a SCC contains one cycle, we can break one cycle at
a time. We break cycles based on loss function. For
each edge gi→gj, we define the loss as the reduction of
Bayesian log-likelihood for gj due to the loss of one of
its parents,

w(gi→gj) = ℓ(gj | π) − ℓ(gj | π \ gi). (5)

Note that w(gi→gj) ≠ w(gi←gj). Although mutual in-
formation might be another possible choice as the loss,
it does not reflect the joint association between different
parents and gj.

If a SCC contains several cycles, sometimes they
share one or more common edges, such as the cycles in
Figure 1. For example, in Figure 1 (a) the edge g2→g3 is
shared by the cycles C1231 (i.e. g1→g2→g3→g1) and
C2342.

There are several criteria to break the cycles. (i)
We can simply cut edges with the smallest loss. (ii) We
can identify the common edges and cut the one shared
by most cycles. In Figure 1 (b), cutting the common
edge g2→g3 will eliminate two cycles. (iii) The loss
function criterion indicates there could be better
choices. Suppose g1→g2 and g3→g4 are the edges with
the minimal loss in cycles C1231 and C2342, respectively.
If the condition

 w(g1→g2) + w(g3→g4) < w(g2→g3) (6)

holds, then we break edges g1→g2 and g3→g4; other-
wise, we break the edge g2→g3.

Figure 1 (b) illustrates a more complicated SCC
with four 3-node cycles C2312, C2342, C2542, C2642. The
edge g2→g3 is shared 2 times and the edge g4→g2 is
shared 3 times. We start cycle elimination from the
most-shared edge (i.e. g4→g2) and use a minimal-
likelihood-loss strategy similar to Eq.(6). If the edge
g4→g2 is cut, then only C2312 remains and we will fur-
ther cut its minimal loss edge; otherwise we use Eq.(6)
to decide which edge(s) in cycles C2312 and C2342 should
be broken.

This minimal-likelihood-loss criterion can be
summarized as follows. If there is no nested cycle, for
each cycle we break the edge with the minimal loss.
When several cycles nest among themselves, we iden-
tify the edge eij shared by most cycles and compare its
loss with the sum of the minimal loss edges in partici-
pating cycles; if breaking eij leads to less loss, we will
cut eij; otherwise we cut the minimal loss edges in every
participating cycle.

(a) (b) (c)
Figure 1. (a) A SCC with two 3-node cycles. (b) A SCC with
four 3-node cycles. (c) A SCC with a 3-node cycle and a 4-
node cycle. Multiplicities of nodes are shown in parentheses.

4.2 Short-Cycle-First Heuristic

Although the minimal likelihood loss criterion is gener-
ally applicable, finding the set of edges with regarding
to this criterion could become very complicated due to
the existence of many cycles and the large number of
common edges they share. Here we propose a short-
cycle-first heuristic to minimize the complexity (for
both computation and implementation) of cycle elimi-
nation.

In BNs, information propagates multiplicatively
because of the probability calculation, thus along a
fixed path of m edges, the influence of the starting node
on the ending node is P1P2⋅⋅⋅Pm approximately. There-
fore, usually a long cycle violates the acyclic assump-
tion less severely than a short cycle. If a SCC contains
cycles of different lengths, our short-cycle first heuristic
breaks the 2-node cycle first, and the 3-node cycle sec-
ond, etc. In Figure 1 (c), we first break the 3-node cycle
C2352. Afterwards, we break the cycle C12341 if it still
exists.

Short-cycle-first heuristic can be efficiently im-
plemented through a matrix multiplication method. Let
A be the adjacency matrix of a SCC. Diagonal elements
of A are zeros. We compute Am with the smallest m such
that nonzero elements appear at matrix diagonal; with
some elementary algebra [9], we can show that (i)
nodes corresponding to nonzero diagonal elements in
Am must involve in m-node cycles; thus finding these
cycles are restricted to the subgraph induced by these
nodes; (ii) the multiplicity of node i (i.e. value of (Am)ii)
equals the number of times a cycle pass through node i
(for example, in Figure 1 (a) and (b) the multiplicity of
nodes are indicated by red numbers in parentheses). (iii)
Starting from the node with the highest multiplicity
using breadth-first-search algorithm, restricting on the
subgraph, we can easily traverse all m-node cycles and
identify the most-shared edges. For example, in Figure
1 (b), we can start from g2 and quickly identify the
most-shared edge e42. We use the criterion in §4.1 to
break cycles. Note that A is usually very sparse and the
sparse matrix multiplications often involve much less
computation than dense matrixes.

The short-cycle-first heuristic allows us to solve
much simpler cycle elimination problems, with the

4

minimal loss criterion. Once one or more edges are cut,
we re-run the SCC-detection algorithm to identify the
new (probably smaller) SCCs and the matrix multiplica-
tion method to identify all remaining cycles. This is
repeated until all cycles are eliminated. Eventually this
procedure returns a DAG G.

4.3 Repair of Local Structures

Once an edge gi→gj in the candidate graph Gc is cut,
there is a loss of the likelihood of ℓ(gj|πj) because now
gj's parent set πj is less optimal. Hence, we must repair
the parent set of each node whose incident edges have
been cut. K2+ parent-search is used to find the optimal
parent set. The repair is done locally, i.e., all other par-
ents of gj are retained during the repair of πj. In addi-
tion, the repair is subject to the acyclic condition, i.e.
the best replacement edge cannot cause cycles.

Suppose in cycle elimination, M edges are cut and
the local structures of the involved nodes need repair.
The sequential order in repairing local structures is im-
portant, because the first-repaired local structures will
give extra-constraints on the space of the later-repaired
local structures due to the acyclic condition (i.e. poten-
tially the search-space of the later-repaired local struc-
tures would be shrunk). Our algorithm proceeds as the
following.

By comparing the candidate graph Gc and the
DAG G returned from cycle elimination, we first locate
the nodes whose local structures need repair. We calcu-
late the likelihood loss of a node due to the cutting of
incident edges. We sort these loss values from large to
small, and repair the nodes according to this ordering.
This maximal-loss-first heuristic is consistent with the
minimal-likelihood-loss criterion. Clearly, during the
course of repair, the DAG after each local repair will
always have a higher likelihood score than the DAG
before this local repair. This repair algorithm has the
complexity of O(βn), where β is the number of nodes
whose parent-sets are repaired.

For simplicity, we call the whole paradigm (in-
cluding the minimal likelihood loss criterion, short-
cycle-first heuristic, and repair) the BreakCycle algo-
rithm. In practice, its complexity is much less than
O(n2).

5. Network Structure Perturbations

To assess the quality of the obtained network, we per-
form local structural perturbations to assess the local
stability of the obtained network G. Suppose we perturb
G into a new structure Ĝ. Let the log-odds-ratio be

)|(
)ˆ|(log)()ˆ(

GDP
GDPGG =−=∆ lll . (7)

We say G is locally stable if ∆ℓ < 0. We consider the
following two types of local perturbations.

5.1 Edge Perturbation

Here we attempt to perturb the edge eij = gi→gj to see if
the Bayesian likelihood score is improved. If the score
is improved, than the edge is "unstable". A "brute force"
perturbation is to simply cut eij and compute the log-
odds-ratio of Eq.(7). However, after eij is cut, gj's par-
ent-set is no longer optimal. Thus this brute force per-
turbation will usually render an edge stable. For this
reason, we do a soft perturbation. We use the K2+ algo-
rithm to find the new optimal parents for g2, excluding
the cut edge (but keeping all other parents if any). We
calculate ∆ℓe

EP ("EP" stands for Edge Perturbation) and
the percentage of stable edges

)(||
1 EP

eEeE
EPr l∆Σ=

∈
δ , (8)

where δ(x) = 1 if x ≤ 0 and 0 otherwise. rEP is an indica-
tor of the local stability of G. A stable G should have
rEP ~ 1.

Note that EP is a local stability test because it pro-
duces a new locally optimal structure for comparison.
The more negative ∆ℓe

EP, the more "stable" the edge e
is.

5.2 Improving Edge Stability

By perturbation, we can identify those unstable edges
whose replacements lead to better likelihood scores.
This suggests that we may improve the likelihood of the
whole network by substituting these unstable edges
with their replacements, subject to the constraint that no
cycles appear after replacements.

The edge-stability-improvement algorithm first
sorts the ∆ℓe

EP of all unstable edges. Similar to the re-
pair algorithm in §4.3, it then goes through all unstable
edges following the sorted ordering (starting with the
most unstable edge). For a given unstable edge e, the
optimal replacement found in EP is first tried to see if
there is cycle caused; if no, then the optimal replace-
ment is used; otherwise the K2+ search algorithm is
invoked to search the best replacement (similar to §4.3,
the search is subject to the acyclic condition, and all
other parents of the current node are retained.).

By applying the edge-stability-improvement algo-
rithm, the Bayesian likelihood score of G is improved
while the number of unstable edges is reduced.

Note that our goal is to detect and repair unstable
edges to improve a single structure. This differs from
other edge quality assessments, e.g. averaging over a
large number of structures [19], where the edge impor-
tance is not associated with a particular structure.

5

6. Summary of Our Approach

As a brief summary, we outline the major paradigm of
our learning algorithm of Bayesian networks as follows.

(1) Use K2+ algorithm to generate the candidate graph.

(2) Use BreakCycle algorithm to generate DAG from
the candidate graph, and repair the local structures
to make the DAG locally optimal.

(3) Use structural perturbation EP to assess the local
stability of the learnt BN, and improve the stability
with the algorithm in §5.2.

7. Experiments

7.1 Data

We use two data sets in this paper. The first is the well-
known Alarm data set [5], which consists of 37 vari-
ables and 10000 samples. There is an intrinsic ordering
of these variables, which however is not used in our
experiments since our major concern is how to model
the data without the ordering information. We use the
Alarm data accompanying the PowerConstructor pack-
age [2]. We compare our results with WinMine [4,15]
developed by Microsoft, because it can generate DAGs
without ordering of variables.

The second data set is the Rosetta Inpharmatics
Compendium [14], which is a genome data set of yeast.
The data have 481 real-valued gene variables with 300
data points (experiment conditions). The original real-
valued variables are discretized to 3-states via thresh-
olding at µ±0.4σ (σ -- standard deviation, µ -- mean).
These states correspond to the over-expression, base-
line, and under-expression of genes.

We use Cross Validation (CV) to evaluate the
generalization strength of learnt BNs. We use 10-fold
CV.

One metric for CV is the cross-validated likeli-
hood of the testing data computed from the learnt BN
where the parameters (i.e. conditional probability ta-
bles) are estimated from the training data. The follow-
ing normalized logarithm likelihood LCV is used:

)|(log
10

1
1 GgpL

sDgsnNCV ∈=
ΣΣ= , (9)

where Ds is the sth-fold test set. Clearly, the larger LCV,
the better the BN characterizes the data. Hence, LCV
evaluates how well the learnt BNs generalize to unseen
data. The normalized data likelihood L for learning is
similarly computed, which is also used in [15].

7.2 Results on Alarm Data Set

The results on the Alarm data set are shown in Table 1.
Results of our algorithms, WinMine, and ordering-
space-search, are shown, together with those computed
from the known true Alarm structure and the null model
(i.e. without interconnecting edges). The k-max search
in K2+ clearly improve the quality of the learnt BNs as
seen from the improvements of quality-measures ℓ, L,
LCV and rEP of the 3-max search results as compared
with the 1-max (K2) search results. The edge stability
algorithm of §5.2 clearly improves all the ℓ, L, LCV, and
rEP. rEP becomes 1 afterwards.

Compared to true model results, our best results
(i.e. 3-max with improved stability) are very close. Re-
member that the ordering of variables is assumed un-
known, thus it is highly unlikely the true structure can
be recovered from data. Hence, these results indicate
our network can model the data almost equivalent to the
true model, with a different network structure (57 edges
in our model versus 46 edges in the true model).

We run WinMine using three different κ values,
0.01 (default value), 0.002, and 8e-12, to adjust the
network to have the same number of edges as our re-
sults or as the true model. For the first two κ values, we
obtained BNs with 57 edges, among which 55 are the
same; the quality metrics of both structures are the
same, but are not as good as our results. In the last case
the BN has 46 edges, the same as the true model, how-
ever it has much worse performances than our models.

If an ordering of variables is known, we can run
K2 to efficiently compute the structure. When no order-
ing information is known, one may generate a random
ordering and compute the structure. One can generate
many random orderings to search for best structure [7].
We perform this ordering-space-search experiment for
100 random trials. Both the mean and best results are
listed in Table 1. They are substantially worse than both
our and WinMine's results. This indicates that it is hard
to generate network with good quality from random
orderings of variables, even at great computation ex-
pense.

We compare the BN structure obtained using our
algorithm with that obtained using WinMine, and also
the true model (although due to the theory of equivalent
graphs [11], this direct comparison is not necessarily
the best comparison). For example, our BN and that of
WinMine both have 57 directed edges, among which 39
are the same. The number of overlapping edges of our
result and the true model is 31, while that of WinMine
and the true model is 22.

6

Overall, the true model has the best quality meas-
ures. This is of course expected. Our resultant networks
have close performance to the true model, which are
clearly better than WinMine and the ordering-space-
search method. The null model performs considerably
worse in all measures.

7.3 Results on Yeast Gene Expression Data Set

Table 2 compares the results on the yeast gene data. In
both our BNs and WinMine's results, there are more
than 1600 edges for the 481 nodes.

For learning, Table 2 shows that k-max search in

K2+ improves ℓ, L, rEP of learnt BNs. Applying the
edge-stability-improvement algorithm leads to steady
improvements in all quality-measures.

We also run WinMine for a variety of parameter κ.
The best results are obtained by setting κ to its maximal
value, i.e. 1.0. Table 2 shows that in the best case,
WinMine results are worse than that of 3-max, i. e.
smaller training score ℓ, smaller edge stability rate rEP,
and less generalization strength LCV. It is interesting to
see that the training likelihood L of WinMine result is
higher than that of 3-max, however LCV of WinMine is
lower than that of 3-max; this implies that the best net-

Table 1. Results on the Alarm data set. (ℓ, L, LCV are all normalized by nN; κ is the WinMine parameter controlling
the complexity of network structure.)

Learning (all data) CV (10-fold) Method Parent
Search Method ℓ L rEP |E| LCV

1-max -0.2587 -0.2543 0.9123 57 -0.2554 Our method
(Before improving stability) 3-max -0.2581 -0.2539 0.9298 56 -0.2550

1-max -0.2566 -0.2522 1.0000 56 -0.2533 Our method
(After improving stability) 3-max -0.2562 -0.2519 1.0000 57 -0.2530

True Model -0.2555 -0.2517 0.9783 46 -0.2526
κ = 0.01
(Default) -0.2593 -0.2551 1.0000 57 -0.2561

κ = 0.002 -0.2593 -0.2551 1.0000 57 -0.2561
WinMine

κ = 8e-12 -0.2655 -0.2622 0.9783 46 -0.2630
Best results -0.2633 -0.2578 0.8730 63 -0.2592 Search of Ordering Space

(100 trials) Mean results -0.2701
±0.0026

-0.2631
±0.0023

0.8765
±0.0521

74.0
±5.4

-0.2650
±0.0023

Null Model -0.5822 -0.5813 --- 0 -0.5815

Table 2. Results on the Yeast gene expression data. n is the number of iterations in stability enhancement.

Search Method
and Parameters Learning (All Data) CV (10-fold)

k-max n ℓ L rEP |E| T (min) LCV
0 -0.9770 -0.8269 0.6222 1326 9 -0.9420
1 -0.9691 -0.7831 0.8451 1517 +44 -0.9303
2 -0.9662 -0.7687 0.9426 1586 +25 -0.9255
3 -0.9654 -0.7640 0.9863 1611 + 8.7 -0.9242

1-max

4 -0.9651 -0.7627 0.9951 1620 + 1.8 -0.9237
0 -0.9710 -0.8019 0.7077 1433 16 -0.9338
1 -0.9654 -0.7689 0.8901 1583 +40 -0.9250
2 -0.9639 -0.7624 0.9579 1614 +27 -0.9226
3 -0.9635 -0.7612 0.9821 1620 +14 -0.9220
4 -0.9634 -0.7606 0.9889 1624 + 6.2 -0.9218

O
ur

 M
et

ho
d

3-max

5 -0.9631 -0.7588 0.9957 1634 + 0.09 -0.9212
κ ℓ L rEP |E| T (min) LCV

0.01 (Default) -1.0218 -0.9918 0.2868 272 57 -1.0063
0.50 -0.9916 -0.9373 0.4944 627 115 -0.9683
0.99 -0.9644 -0.7744 0.9064 1528 229 -0.9239
0.999 -0.9638 -0.7591 0.9468 1616 235 -0.9224 W

in
M

in
e

1.00 -0.9636 -0.7554 0.9494 1641 268 -0.9220
Null Model -1.1079 -1.0918 --- 0 0 -1.0987

7

work of WinMine might overfit data slightly.

Table 2 also lists the time (on PIII 1G CPU) of
each method. A plus "+" in our results means the time
spent for the current step for edge stability improve-
ment. (Our algorithms were implemented in Matlab and
C++, while WinMine was implemented in C++). Our
method uses less than 16 minutes to generate an initial
BN, and 1 hour or so to refine the network structure. In
contrast, WinMine takes about 4 hours to generate a
network with the similar performance. These timing
results show that our methods are much faster than
WinMine, due to our algorithm's O(n2) computational
complexity.

Many of regulatory relationships with high stabil-
ity obtained in the networks can be confirmed by the
biological literatures. We extract sub-networks involv-
ing well-studied genes. We find these genes often have
closely related biological functions. These biologically
plausible regulatory relationships and sub-networks
indicate the strength of our new methods. Table 4
briefly lists several highly stable regulatory relation-

ships we have obtained, which are also supported by
biological findings. An arrow between two genes,
gi→gj, implies gi likely regulates gj. From public-
domain yeast-gene databases, e.g. the Saccharomyces
Genome Database (SGD) at Stanford University [13],
the biological significance of the associations can be
easily confirmed. For example, in our results the gene
ARG1 regulates the gene ARG5. Biologically, they are
both related to arginine biosynthesis [13].

8. Discussions and Conclusion

A characteristic of the networks in our results is that
they are rather sparse, which partially explains the high
local stability of the obtained structures regarding to the
perturbations. This also implies that some weaker or
higher order associations could be missed in our
method. One way to capture those associations is to let
K2+ parent-search algorithm generate denser candidate
graph, by relaxing the conditional independence re-
quirement and/or expanding the search to generate large
parent sets.

Currently, our cycle elimination algorithm deter-
ministically returns a DAG given a candidate graph
based on the least likelihood loss criterion. One could
also introduce randomization so that the algorithm re-
turns a number of structures that can facilitate model
averaging.

In this paper, we use local structural perturbations
to systematically assess the roles of individual edges in
the network. Based on them, one could build larger
subnet-level perturbations using clustering, seed grow-
ing, etc. This could help to detect sub-structures of
Bayesian networks.

We use structural perturbation to define edge im-
portance and cross validation for quality assessment.
Note that there is possibility of overfitting the underly-
ing data distribution. The cross-validation method pro-
vides means to see if the model overfits the data. Our
structural perturbations provide potentially useful as-
sessment of this issue. As shown in the experiments,
stable networks against structural perturbations are not
likely to be overfitted.

Another method is the Bayesian model averaging
[8,19] that produces confidence scores for individual
edges by averaging over high scoring structures. When
the number of observations is small compared to the
number of variables, there is concern that the data is
insufficient to distinguish among high scoring struc-
tures with confidence. This question could be probed by
techniques like our methods, model averaging, etc.

In summary, we propose improved techniques for
efficiently learning BN for large number of variables.

Table 4. Examples of stable associations in our results; their bio-
logical plausibility are indicated by the summaries in the SGD at
Stanford University.

Associations Biological significance

ADE1 → ADE2
ADE1 is a phosphoribosylaminoimidazole-
succinocarboxamide synthase while ADE2 is a
phosphoribosylaminoimidazole carboxylase.

ARG1 → ARG5
Both genes are related to arginine biosynthesis.
ARG1 is an argininosuccinate synthase while
ARG5 is an ornithine carbamoyltransferase.

ERG3 → ERG25
ERG3 is a C-5 sterol desaturase; ERG25 is a C-4
methyl sterol oxidase; both are related to ergos-
terol biosynthesis.

HXK1 → GPH1
HXK1 is a hexokinase related to fructose me-
tabolism and glycolysis while GPH1 is a glycine
amidinotransferase.

HXT6 → HXT7
Both genes are fructose transporter, glucose
transporter, and mannose transporter that are
related to hexose transport.

IDH2 → IDH1

Both genes are related to glutamate biosynthesis,
isocitrate metabolism, and tricarboxylic acid
cycle. Both are isocitrate dehydrogenases
(NAD+).

IDH2 → ACO1
IDH2 is a isocitrate dehydrogenase and ACO1 is
an aconitate hydrataseand. Both are related to
glutamate biosynthesis.

MET16 → MET10

Both genes are related to methionine metabolism
and sulfate assimilation. MET10 is a sulfite
reductase (NADPH) while MET16 is a phos-
phoadenylyl-sulfate reductase (thioredoxin).

RNR2 → RNR4 Both are ribonucleoside-diphosphate reductases
that are related to DNA replication.

SIT1 → FET3

FET3 is a multicopper ferroxidase iron transport
mediator; SIT1 is a siderochrome-iron (ferriox-
amine) uptake transporter. Both are related to
iron transport.

YPS6 → YPS5 Both are aspartic-type endopeptidases that are
related to cell wall (sensu Fungi).

8

We expand the Bayesian network search space while
reducing search for less likely space due to conditional
independence. This constructs locally optimal parent-set
for each node to form the candidate graph. A systematic
approach based on minimal-likelihood-loss is used to
eliminate the cycles in the candidate graphs, which is
efficiently implemented using a short-cycle-first heuris-
tic. The maximal-loss-first heuristic is used to repair the
local structures to assure the local optimality of the
DAG. Edge perturbation is proposed to evaluate the
local stability of the network. Unstable edges are re-
placed, leading to more stable network. Cross-
validation is used to assess the generalization strength
of the network. Based on experiments on Alarm data
and a genomic data set, the quality of the networks
learnt is better than those of WinMine and ordering-
space-search, while the speed is improved significantly.
The associations learnt from the genomic data are in
good agreement with the earlier findings of biological
literature.

Acknowledgements
We thank Edward Herskovits for discussions on Bayes-
ian learning, David M. Chickering for discussion on
using WinMine, and Dana Pe'er for providing the list of
481 genes. The software and network structure results
are available upon request. This work is supported by
Department of Energy, Office of Science (MICS Office
and a LBNL LDRD) under contract No. DE-AC03-
76SF00098.

References

1. Buntine, W, A guide to the literature on learning prob-
abilistic networks from data, IEEE Trans on KDE, vol.8,
no.2, pp.195-210, 1996.

2. Cheng, J., Bell, DA, Liu, W., Learning belief networks
from data: an information theory based approach, 6th
ACM Int'l Conf on Information and Knowledge Man-
agement, 1997.

3. Chickering, D., Geiger, D., and Heckerman, D., Learning
Bayesian Networks is NP-Hard, Technical Report MSR-
TR-94-17, Microsoft Research, 1994.

4. Chickering, D.M., The WinMine toolkit, MSR-TR-2002-
103, Microsoft Research, Oct. 2002.

5. Cooper, G.F., and Herskovits, E., A Bayesian method for
the induction of probabilistic networks from data, Ma-
chine Learning, vol.9, pp. 309-347, 1992.

6. Corman, T.H., Leiserson, C.E., and Rivest, R.L., Intro-
duction to Algorithms, MIT, 2001.

7. Friedman, N., and Koller, D., Being Bayesian about net-
work structure: a Bayesian approach to structure discov-
ery in Bayesian networks, Machine Learning, 2002.

8. Friedman, N., Linial, M., Nachman, I., and Pe'er., D.,
Using Bayesian networks to analyze expression data, J.
of Comp. Biology, vol.7, pp.601-620, 2000.

9. Harary, F., Graph Theory, Addison-Wesley, Reading,
Mass, 1969.

10. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., and
Young, R.A., Using graphical models and genomic ex-
pression data to statistically validate models of genetic
regulatory networks, PSB-2001, Jan 2001.

11. Heckerman, D. A tutorial on learning with Bayesian
networks, in M.I. Jordan (Ed.) Learning in Graphical
Models: 301-354, MIT Press, 2000.

12. Heckerman, D., Chickering, D.M., Meek, C., Roun-
thwaite, R., and Kadie, C., Dependency networks for in-
ference, collaborative filtering, and data visualization, J.
Machine Learning Research, vol.1, pp.49-75, 2000.

13. http://genome-www.stanford.edu/Saccharomyces.
14. Hughes, T.R., et al, Functional discovery via a compen-

dium of expression profiles, Cell, vol.102, pp.109-126,
2000.

15. Hulten, G., Chickering, D.M., and Heckerman, D.,
Learning Bayesian networks from dependency networks:
a preliminary study, AI & Statistics 2003, pp.54-61, Key
West, Florida, Jan. 2003.

16. Larranage, P., Poza, M., Yurramendi, Y., Murga, R.H.,
and Kuijpers, C.M., Structural learning of Bayesian net-
works by genetic algorithms: a performance analysis of
control parameters, IEEE Trans. PAMI, vol.18, pp.912-
926, 1996.

17. Murphy, K., and Mian, S., Modeling gene expression
data using dynamic Bayesian networks, Technical report,
CS Division, Berkeley, 1999.

18. Pearl, J., Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, San Mateo, CA: Mor-
gan Kaufmann, 1988.

19. Pe'er, D., Regev, A., Elidan, G., and Friedman, N., Infer-
ring subnetworks from perturbed expression profiles,
Bioinformatics, vol. 17, pp.215S-224S, 2001.

20. Peng, H.C., Herskovits E, and Davatzikos C, Bayesian
clustering methods for morphological analysis of MR
images, IEEE Int'l Symp on Medical Imaging: Macro to
Nano, pp.875-878, Washington. D.C., July, 2002.

21. Robinson, R.W., Counting labeled acyclic graphs, In
C.H.C. Little (Ed.), Lecture Notes in Mathematics, 622:
Combinatorial Mathematics V., New York: Springer-
Verlag, 1977.

22. Sarkar, S. and Boyer, K. L., "Integration, Inference, and
Management of Spatial Information Using Bayesian Net-
works: Perceptual Organization" IEEE Trans on PAMI,
vol.15, no.3, pp.256-274, 1993.

23. Yoo, C., Thorsson, V., and Cooper, G., Discovery of
causal relationships in gene regulation pathways from a
mixture of experimental and observational DNA mi-
croarray data, PSB-2002, pp. 498-509, 2002.

